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How Thick Is a Liquid-Vapor Interface? 
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The structure of the interface of an argonlike fluid in equilibrium with its vapor 
near the triple point is studied using Monte Carlo simulation. By referring par- 
ticle coordinates to the capillary waves and calculating the transverse structure 
factor in that reference frame, one can determine the penetration depth of the 
capillary waves into the bulk as a function of the wave vector. The penetration 
depth of the lowest capillary mode is consistent with the interfacial thickness as 
determined from the intrinsic density profile, and the data for the higher modes 
suggest that the penetration depth might be independent of k. 
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profile; wave penetration; computer simulation. 

1. I N T R O D U C T I O N  

The interface between coexisting liquid and gas phases has been a subject 
of some controversy in recent years. The crux of the problem is in the dif- 
ferent results derived from two phenomenological models of the interface, 
both of which are physically reasonable. The first, the mean field 
approximation, which was originally formulated by van der Waals, t1~ 
assumes that particle cores are uncorrelated by position and that local 
thermodynamics is valid, and decomposes the intermolecular interaction 
into a hard core plus a long-range attractive tail. Based on these con- 
siderations, one may derive the following expression for the density 
profile(2l: 

n(z) = 1/2[(n~ + ng)- (nl- ng) tanh(27z)] (1) 

~Department of Physics, New York University, New York, New York; Department of 
Chemical Engineering, University of Virginia, Charlottesville, Virginia. Present address: 
Department of Chemical Engineering, Princeton University, Princeton, New Jersey. 

2 Courant Institute of Mathematical Sciences and Department of Physics, New York Univer- 
sity, New York, New York. 

319 

0022~4715/87/1000-0319505.00/0 �9 1987 Plenum Publishing Corporation 
822/49/1 2-21 



320 Heath and Percus 

where n t and ng a re  the respective liquid and gas densities. The quantity {31 

D = 1/y = - ( n , -  ng) (dn/dz)  - l ]  =o (2) 

where z o is the location of the interface, may be taken as a measure of the 
thickness of the interface, and is a function of the range of the tail. 

The second model is the capillary wave model of Buff et al. (4) They 
assumed that an interface of area A - - L  2 could be defined by a height 
function ~(x, y), and expanded ~ in terms of its Fourier components: 

{(x) = ~ a(k) exp(ikx) (3) 
k 

Analysis of the energy required to distort the interface led to the following 
expression for the mean square amplitude, another measure of the inter- 
facial thickness: 

1 = = ~ (2a 2 + k  2) 1 
(42 )  ~ 2 ~ > o ( a ( k ) a ( - k ) )  f l~Ak2>o 

1 1 + 2(xa / l )  2 
~ 4 ~  In 1 + 2 ( ~ a / L )  2 (4) 

where a 2 = 2 a / m g ( n z -  ng), g is the gravitational constant, m is the mass per 
particle, a is the surface tension, fi is the inverse temperature, and l is the 
atomic diameter. The quantities l and L serve to define upper and lower 
limits on k, since the complete sum over k diverges.Further  analysis of this 
results indicates that in the limit A--+ 0% (~2 )  diverges as ( - I n  g)l /2 as 

g-+0 ,  or conversely, in the limit g-+O,  (~2 )  diverges as ( lnA) 1/2 as 
A--+ oo. Thus, we see that the interfacial thickness is undefined in the 
thermodynamic limit. 

Consideration of the fluctuations (s~ of the potential tail that are 
ignored in the mean field theory shows that capillary waves must exist. The 
transverse structure factor takes the form (6) 

1 n ' ( z l )  n'(z2) 
S(k ,  z l ,  z2) = fl a k  2 _ ~ n ' ( z )  u ' ( z )  dz (5) 

where u(r) is the potential of the force distorting the interface. The 
structure factor has the same k 2 behavior as (~2) ,  which is indicative of 
long-range correlations in r space. 

A n  interesting corollary of these results is that in the absence of 
gravity and on a hydrodynamic length scale the interface has the structure 
of a fat fractal, (7) since the change in area due to the distortion scales 
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according to the high-k cutoff. It is a fat fractal because its surface has a 
nonzero measure in three dimensions in the presence of capillary waves. 
This cutoff defines the length scale, 6x = 1/k . . . .  and thus the change in 
area is 

N N 2 
AN=-- 2 k2(alk)a( k)>--2fl  a (6) 

k2>O 

But 
N = k~na• L/2~ = L/2g ~x (7) 

and therefore A N ~ ( 6 x )  2. The Hausdorff  dimension of AN, defined by 
A(6x) = (~x) 1 D,(st is thus D =  3. This will be approximately true for a 
weak external field where 2a 2 ~ k 2, since the correction to A N is of order 
- g  In N. It is easy to generalize this result to an arbitrary dimension, and 
one finds that the Hausdorff  dimension D H is D H = 1 + D E, where DE is 
the Euclidean dimension of the interface. 

Today, we regard the interface as an intrinsic interface broadened by 
the presence of thermally excited capillary waves. The question to be 
addressed is: How thick is the intrinsic interface, and how much is it 
broadened? In this paper, we present the results of the analyses of a Monte 
Carlo simulation of a liquid vapor system. In particular, we have measured 
the width of the interface and compared it with an intrinsic interface to see 
how much broadening has occurred. We define a capillary frame of 
reference, and by comparing the transverse structure factor S(k, z) as 
calculated in this reference frame to that calculated in a bulk liquid, we 
determine the penetration depth of capillary waves into the bulk liquid as a 
function of k. We are interested in defining a capillary frame of reference 
since it also offers the possibility of decreasing the equilibration time of 
simulations of interfaces. 

2. C O M P U T E R  S I M U L A T I O N S  

The system used in our study consisted of 1728 particles of liquid 
argon at 84 K, just above the triple point, and with an average liquid den- 
sity of 0.76 particles per unit volume. The interaction potential is a shifted, 
truncated Lennard-Jones 6 12 potential with e = 119.4 K and ~ = 3.405 ~, 
and the potential cutoff was at r = 2.5~r. We assume the radius of the par- 
ticles to be 0.80c~. The liquid is in the center third of a cell of dimension 
l x l x 3 l ,  where l=13.15a ,  and gas is in the upper and lower thirds. 
Periodic boundary conditions were imposed in all three directions. The 
interfaces are taken to be in the x y  plane and the origin of the coordinate 
system is taken to be in the center of the cell. 
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The system was well equilibrated to begin with, and was run over 8100 
time steps of a Monte Carlo Metropolis (9) algorithm that was modified to 
move preferentially particles near the surface. The maximum step size in 
any direction is _ 0.1cr, with an average absolute step size of 1--0.093a, and 
the acceptance rate was 51.35%. Every tenth configuration was saved for 
performing our calculations. The average step size per particle (between 
every tenth configuration) was 0.223 _+ 0.05a, and the average total 
displacement per particle over all 8100 time steps was 4.273 _+ 2.153cr. 

Our method of preferentially moving particles near the surface during 
the simulation involved dividing the cell into 15 slabs in the x y  plane, 
numbering them 1 15 from bottom to top, and assigning a weight to each 
slab. In the center of the liquid, slab 7 will have a weight of 1, slabs 6 and 
8, nearer to the surface, will have a weight of 2, and all of the others will 
have a weight of 4. These weights determine how many times we attempt to 
move a particle in the slab in the course of one pass. With this weighting 
scheme, the total number of attempted moves per pass is then 

(weight for each slab)(number of particles per slab) ~ 4500 
slabs 

3. DENSITY PROFILE 

We calculated the density n(x, y, z) for each configuration, using a 
grid with eight subdivisions in the x and y directions and 400 subdivisions 
in the z direction, which provides a resolution of O.la along the z axis. 
Specifically, 

n(x, y ,z)=(Tcr2 fiz) -1 r 3 E fiVi(X, y ,Z)  (8) 
i 

where r~ = (13.15/8 xfl2)a may be taken as the radius of a cylindrical 
probe, with fiz=O.la as its thickness, r2=0,8o" is the atomic radius, and 
fivi(x, y, z) is the overlap volume of the ith atom with the probe centered at 
(x, y, z). The sum is over all particles overlapping the probe. Using smaller 
subdivisions in the x y plane would cause the particles to look like delta 
functions. We averaged n(x, y, z) over the x-y  plane to obtain the density 
profile n(z), and we calculated the standard deviation of this spatial 
average, fin(z). Both quantities were averaged over both surfaces and over 
all configurations and these ensemble averages are presented in Fig. 1. 
Defining the interface as that region between n(z)= 0.1nt and n(z)= 0.9nl, 
we find that the width of the interface is about 2.3a. The function fin(z) 
exhibits a peak in the interfacial region whose width is another measure of 
the width of the interface. This peak is about 2.7a wide. 
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Fig. 1. The bulk density profile and its standard deviation. 

Defining the location of the interface as that set of points in the 
x y  plane where the density is half the average bulk density, we may, for 
each configuration, locate the interface function ~j(x, y) for each surface j 
on an 8 x 8 grid from the density n(x, y, z). In Fig. 2, we present the ensem- 
ble average of the interface function. Included in this is an average over 
both surfaces, which could reduce the actual surface amplitude due to 
phase interference. We do this to reduce the noise on the surface, but this is 
not essential to any later results. Also, we note that since the surface is not 
flat, the capillary waves have not equilibrated. By averaging ~/(x, y) over 
all pairs (x, y) for each surface, we find the average location of the two sur- 
faces, zl and z2. Averaging these over all configurations, we find that 
<z 1 > = -6.198cr and <Z2> = 6.103cr with an average absolute amplitude of 
6z=0.416cr. We use ~j(x, y) along with z 1 and z 2 to define an intrinsic 
profile ni(z), the density profile in the absence of capillary waves. To do 
this, we first divide the configuration along the x -y  plane at z = 0. Then, for 
each half of the configuration, we shift the z coordinate for each pair (x, y) 
of n(x, y, z) by the amount  z s -  ~j(x, y). This has the effect of flattening out 
the interface. However, it should be noted that there will still be density 
variations within the interface due to variations in the local density profiles, 
and so the surface is not perfectly flat. Next, we averaged this "shifted" 
n(x, y, z) over the x y  coordinates to obtain the intrinsic profile for the 
half of the system on which we have been working. Once we obtain an 
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Fig. 2. The liquid vapor interface. 

intrinsic profile for each half of the configuration, we average over the 
halves to obtain ni(z), the intrinsic profile. 

In Fig. 3, we present  the ensemble averages of ni(z) and of the stan- 
dard deviation of the spatial averaging performed in calculating ni(z). Note 
that the length scale is centered on the interface, which is at z = 5.0. We see 
that the standard deviation has a dip at the value of z where the interface is 
located. This is to be expected, since the intrinsic profile was defined in 
such a way so as to flatten out the interface. The peaks on either side of the 
dip are much reduced in magnitude over the corresponding peak for the 
bulk profile, and reflect the local variations in the density profile mentioned 
above. One can see that as we move away from the interface, a local linear 
translation is not the best way of transforming away the capillary waves. 
From these graphs, we obtain an interfacial thickness of 1.7or, which 
suggests that it is of the order of the bulk correlation length, but we have 
made no at tempt to measure this. The thickness of the interface is a 
function of the cross-sectional area, and should increase as (ln A) 1/2 as the 
area is increased. 
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Fig. 3. The intrinsic density profile and its standard deviation. 

4. T H E  C A P I L L A R Y  F R A M E  O F  R E F E R E N C E  

A major obstacle in performing simulations of interfacial phenomena 
is that capillary waves move very slowly, thus requiring extremely long 
computer runs to obtain reasonable statistics. However, this obstacle 
would be removed if one could refer particle coordinates to the capillary 
waves. This has other advantages as well. The depth of the intrinsic inter- 
face is greater than zero, and there is considerable variance in the density 
within the interfacial region, which, along with the fact that the density is 
increasing rapidly from the gas to the liquid density, is a source of 
systematic errors in any interfacial quantity. A suitable choice of a capillary 
frame of reference can minimize these systematic errors. By comparison of 
the transverse structure factor calculated in this capillary frame of reference 
with the bulk structure factor, one may determine optimal definition of this 
reference frame. 

For each configuration, we define 

6z, = (~(xi) - (Zi ) )  exp{ - 1/2[(~(x,) - zi)2/b 2] } (9) 

so that z ;=  z i+  5zi is the capillary coordinate of the ith particle, where 
~(xi) is the z coordinate of the surface point corresponding to particle i, 
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( z j )  is the average z coordinate of surface j, and b, the depth parameter, is 
a measure of the thickness of the interface, and will be determined 
empirically. We are assuming that the amplitude of the capillary waves is 
symmetric with respect to the surface. The presence of the peaks in the 
standard deviation of the intrinsic profile indicates that capillary waves do 
not penetrate into the bulk of the liquid, and thus we want to confine our 
change of reference frame to particles near the surface. 

For  the purpose of locating the interface for points not on the grid, we 
treat the surface as a superposition of Gaussians centered on the grid 
points: 

~(xi) = ~ ajz(xj) e x p ( -  x~/2~ 2) (10) 
J 

where the coefficients aJ are determined subject to the condition that 
~(xi) = z(x/) for x i =  X/, and where Jra2= (L/8) 2, the area of one block on 
the grid. Here, r is an arbitrary point on the surface, z(xfl is the inter- 
face at point xj on the grid, and the sum is over all grid points. 

We determine the best value of b by minimizing the difference between 
the structure factor calculated on the surface with a particular value of b 
and the bulk structure factor. In the absence of a detailed model of a non- 
uniform fluid without capillary waves, we have chosen the structure factor 
in the bulk liquid, far from the interfaces, as our reference point. We will 
determine the penetration depth of the capillary waves by looking at the 
deviation of the structure factor in the interfacial region from the reference. 
We will, however, have some irreducible noise from the gas side of the 
interface. We defined the structure factor as 

,~(k, z) = ~ IJo(kr~)l 2 (11 ) 
i 

where the sum is restricted to particles within 6z = _+ 1.3a of z and Jo is a 
zeroth-order Bessel function. We use Jo(kr) in order to average out any 
x -y  anisotropy arising from our choice of coordinate system and boundary 
conditions. Reducing the thickness of the slabs will increase the sensitivity 
of S(k, z) to the capillary transformation, but will increase noise due to the 
reduced number of particles per slab. Our values of b range from 0.5~ to 
4.0r by steps of 0.25a, and we calculated o~b(k, z) for each value of b with z 
ranging from - 8 . 0 a  to 8.0a by steps of 0.5a; we averaged these over all 
configurations (see Fig. 4 for selected graphs with b=2.0~) .  For  each 
configuration, we calculated the difference function 

f~(k)  =_ y,  q~(k ,  z) - &k ,  0)1 ~ (12) 
i 
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where S(k, 0) is the bulk structure factor, and averaged this over all con- 
figurations. We looked for that value of b that minimized this function for a 
particular value of k. Because the system is isotropic in the x-y plane in 
pair space, the k values that we used denoted in order of increasing 
magnitude by kl,  k2, k3 ..... were chosen so that J'o(kr) was zero for the 
maximum value of r, which for our case is 6.575a. In Fig. 5, we present the 
ensemble average of fb(k) for the four lowest k values, and in Fig. 6, we 
present the standard deviation of the ensemble averages. The modes them- 
selves are of course those of a circular drumhead with Neumann boundary 
conditions. 

Examination offb(k)  shows that it has very weak minima for the kl 
and k 2 modes, and is essentially flat for higher modes. However, the 
weakness of the minima is such that we need to consider the effects of 
noise. To do this, we calculated the standard deviation of (fb(k)), 
6(fb(k)) (see Fig. 6). We find that, for the kl mode, O(fb(k)) has a clear 
minimum at b = 2.0a, and for the k2 mode, there is an inflection point at 
b--2.0a,  with 6(fb(k)) , being flat for b < 2.0a and monotonically increas- 
ing for b > 2.00-. For  the higher k modes, 6(fb(k)) is essentially flat. 

The depth parameter b is a measure of how much we have transfor- 
med away from the lab flame. Small values of b correspond to small par- 
ticle shifts and small deviations from the lab frame, while large values of b 
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Fig. 5. 
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correspond to large particle shifts. A value of zero for b would leave the 
system in the lab frame. The minimum for the k1 mode indicates that as 
b ~ 2.0a, systematic errors due to the presence of capillary waves in the 
interface are reduced, reaching a minimum at 2.0a; increasing b beyond 
2.0a moves the particles farther than necessary, introducing spurious 
correlations, thus increasing systematic error. The flatness of 6<fb > for the 
k 2 mode for b<2 .0a  indicates that the k 2 mode contributes little to 
capillary motion, and the fact that it increases monotonically for b > 2.0a 
again indicates the introduction of spurious correlations from having 
moved particles too far. The higher k modes also appear to contribute little 
to capillary motion, but the data are too noisy to be conclusive. 

Thus, we take as our criterion for determining the best of b as that 
value that minimizes the noise, and we see that the minimizing value for 
the k I mode is clearly b = 2.0a. The fact that the minimum for the kl mode 
and the inflection point for the k 2 mode both occur for b = 2.0or suggests 
that the penetration depth might be independent of k, but this needs 
further investigation. 

C O N C L U S I O N S  

We have found that the width of an intrinsic interface in our model 
system is about 1.7or, which is broadened by thermally excited capillary 
waves to about 2.7a at 84 K. By referring particle coordinates to the 
capillary coordinates and comparing the transverse structure factor o~(k, z) 
calculated in that reference frame to that calculated in a bulk liquid, we can 
determine the penetration depth of capillary waves into the bulk liquid. We 
find that the penetration depth of the lowest k mode is 2.0a, which is of the 
order of the width of the intrinsic profile. Examination of the next lowest 
mode suggests that the penetration depth is independent of k, although this 
needs further investigation. 

Since the k I mode is the dominant contribution to the capillary waves, 
and since the data suggest, although they do not conclusively prove, that 
the penetration depth is independent of k, we take the value of b = 2.0a as 
being the thickness of the interface at 84 K and as generating the best 
definition of the capillary frame of reference. Further work is needed to 
show that the system does indeed equilibrate more quickly in the capillary 
frame, and this would involve calculating the pressure and chemical poten- 
tial. An interesting method of calculating the capillary contribution to these 
quantities is to regard the capillary transformation, which is a local coor- 
dinate transformation, as analogous to the local gauge transformations 
used in defining quantum gauge fields. One then needs to determine the 
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invariants of this t ransformation,  and from these invariants determine the 
chemical potential  and pressure contr ibut ions needed to maintain  the 
invariance. This requires further study. 
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